免费GPU平台体验对比

2019/08/01 tensorflow GPU

谷歌colab

  • 查看OS版本
!cat /etc/issue
Ubuntu 18.04.2 LTS \n \l
  • 查看显卡配置
!nvidia-smi
Thu Aug  8 10:10:22 2019       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.67       Driver Version: 410.79       CUDA Version: 10.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla T4            Off  | 00000000:00:04.0 Off |                    0 |
| N/A   67C    P0    30W /  70W |    237MiB / 15079MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+
  • 查看cuda版本
!nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130
  • 查看cudnn版本
!cat /usr/include/cudnn.h | grep CUDNN_MAJOR -A 2
#define CUDNN_MAJOR 7
#define CUDNN_MINOR 6
#define CUDNN_PATCHLEVEL 2
--
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)

#include "driver_types.h"
  • tensorflow的使用
import tensorflow as tf
print(tf.test.is_gpu_available())
print(tf.__version__)
True
1.14.0

百度aistudio

  • 查看OS版本
!cat /etc/issue
Ubuntu 16.04.6 LTS \n \l
  • 查看显卡
!nvidia-smi
Thu Aug  8 20:26:10 2019       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 396.37                 Driver Version: 396.37                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla V100-SXM2...  Off  | 00000000:00:07.0 Off |                    0 |
| N/A   34C    P0    41W / 300W |      0MiB / 16160MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
  • 查看cuda版本
!nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Tue_Jun_12_23:07:04_CDT_2018
Cuda compilation tools, release 9.2, V9.2.148

说明

cuda9.2这个版本对任何gpu版本的tensorflow都无法适配。。 期待百度那边早日升级cuda版本到10.0

  • 查看cudnn版本
!cat /usr/include/cudnn.h | grep CUDNN_MAJOR -A 2
#define CUDNN_MAJOR 7
#define CUDNN_MINOR 3
#define CUDNN_PATCHLEVEL 1
--
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)

#include "driver_types.h"
  • tensorflow的使用(需手动安装)
!pip install tensorflow-gpu 

说明

  • 不指定版本的话,默认下载最新版本。import tensorflow不报错,但无可用的gpu,tensorflow检测不到相应版本的cuda包,自动切换到cpu版本
  • !pip install tensorflow-gpu==1.12.0 后,import tensorflow 报错,提示需要cuda9.0,实际已装cuda9.2,cuda版本不匹配
  • 高版本(1.14.0/1.13.1)的gpu需要cuda10.0,低版本(1.5.0-1.12.0)的gpu需要cuda9.0
import tensorflow as tf
print(tf.test.is_gpu_available())
print(tf.__version__)
False
1.14.0

总结对比

  • colab环境较新,对tensorflow支持的较好。但是不支持数据的存储,断开重连后数据会丢失
  • aistudio支持数据的存储,断开重连后数据还在。但运行环境只对自家的paddle适配的好,不自带tensorflow的包,每次重启需重新下载,且目前cuda的版本无法适配任何一版gpu的tensorflow

参考

Search

    Post Directory